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1. Introduction

- T T,

- This paper is concerned with the problem of sorting N items in parallel
: on a fixed-connection graph G having N nodes labeled {0,1,...,N-1} and
constant valence. Each node initially contains one key. The set X of all N

keys is assumed to have a total ordering <. The network sorts by routing each

key x€X to node j=rank(x) where rank(x) is defined as |{x' €x|x'<x}]|.
This can be viewed as a distributed packet routing problem. Each x€X is
considered to be an atomic packet that has to be routed from its initial node
to the node corresponding to its rank. Both the rank computation and the packet
routing have to be realized in a completely distributed manner.

We assume that each node contains a single sequential processor with local
storage for Of{log N) packets. The processors are regarded as synchronous for
the purpose of step counting, but the algorithm itself does not require it. 1In
unit time interval a processor may transmit one of its packets along a departing
edge and perform scme elementary operation such as a comparison. The processors
are capable of generating random bits of information and hence running
randomized algorithms in the sense of Rabin [9] and Solovay and Strassen [1ll1].

Clearly the routing required to sort may require time at least the diameter
of the graph. If G has constant valence then the diameter is at least {(log N).
Hence the 0(log N) time bound for our algorithm is asymptotically optimal. In
this paper we restrict ourselves to demonstrating that this bound is achievable
in principle and do not pursue the issue of the magnitude of the constant
multipliers. We note, however, that it is within a large class of algorithms
that is experimentally testable in the sense of [13].

The main components of the algorithm are the splitter directed routing
procedure SDR and the splitter finding procedure SF which itself uses SDR.

They are described and analyzed in Sections S and 7 respectively.




A summary of the algorithm for sorting on the n-dimensional cube connected
cycles network (CCC) of Preparata and Vuillemin [8] is as follows. Note that

n

the number of nodes is N=n2 and hence n <log N. (Logarithms are assumed to

have base 2 throughout this paper.)

Step A: Call SF(A). This finds a set of 2n/n6 elements called “"splitters"
that divide X, when reggrded as an ordered set, into roughly equal
intervals.

Step B: Route each packet tc a random node and call SDR(A) with the splitters
found in Step A. This will route the keys belonging to each interval
to the 6 logn dimensional subcube corresponding to it. In this way
an approximate sort is achieved, but the keys are not spread completely
uniformly around the network.

Step C: Compute the rank of each key.

Step D: Route each packet to the node corresponding to its rank.

The O(log N) bhehavior of each of the four steps A-D will be established
respectively as follows: Theorem A (Section 7), Theorem B (Section 5),
Algorithm C (Section 6) and Theorem D (Section 3). We note that Theorem B is
invoked in Step B with n-£=6 logn, which is sufficient for the O(log N)

bound. The following then follows immediately.

Main Theorem. There is a randomized algorithm that for some k and all n and all
suffictently large a sorts on an n-dimensional CCC network, and terminates

within kan steps with probability greater than 1-2 °".

Previous algorithms for sorting N keys on constant valence fixed connection
networks of N processors require time (log N)z. The bitonic sorter of
Batcher [3] achieves this bound on such networks as the CCC [8].

For less realistic models of parallel computation faster algorithms have

been known. For example, J. Wiedermann observed several years ago that the




Quicksort of Hoare [6) takes time O(log N) with high likelihood on a parallel

decision tree model. Reischuk [10] has a related result fcr a parallel random
access model.

Our current algorithm follows the randomized routing ideas introduced in
[13]. It can be viewed as a partially successful attempt at reducing the
sorting problem to the apparently simpler problem of routing. In the analysis
the critical path technique developed by Aleliunas [1] and Upfal [12] for

analyzing routing in constant valence graphs plays an important part.




2. Network Definitions

We define various constant valence networks derived from the n-dimensional

binary hypercube. Consider some fixed n#1. Let the node set be
v={w,i)|we{o,1}", i€fo,...,n-1}}

which has cardinality N=n2n. For each a€V 1let address(a)=w and
stage(a) =i if a=(w,i). Let w[i] be the i-th bit of w. Let w'=EXT(w,1i)
be identical to w except that w'(i] #w[i]. Also let w be the integer of
which w is the binary representation.

We call an edge from node a to node b internal if address(a) = address(b)
and extermal if address(b) = EXT(address(a),stage(a) +1 mod n). It is forward if

stage (b) = stage(a) + 1 modn, static if stage(b) = stage(a), and reversc if stage(b) =

{stage(a)-1)mod n. The CCC_ network of Preparata and Vuillemin |Y) has node set v ana

exactly all forward internal edges, reverse internal edges and static external edges. For
ease of description this paper will assume a network more similar to that of
Upfal [13] which we call _CEC_.‘;: It contains node set V and all forward and
reverse internal edges and all forward and reverse external edges. Clearly any
algorithm for CCCz can be simulated on CCCn with at most a factor of two time
increase. Finally, we define _C_C_C“; to be the network obtained by taking a CCCz
and removing all edges that join pairs of nodes with respective stages O and n-1l.
The significance of CCC‘; is that numerous copies of it can be found in CCCx";

if n>m. 1In particular, for any w

, W, such that lel + |w2| = n-m the

1 2
s.ubgraph of CCC* spanned by the nodes {(wlwwz,i) |we {0,1}™ and
lwll €i< lwll +m} is isomorphic to cec.

Note that CCCn, CCC": and CCCX‘; are all naturally related to the n-
dimensional hypercube Hn. Intuitively, for each w€ {O,I}n the set of nodes

{a€v|address(a) =w} can be considered to be a "supernode" of H . Each such

4 ) ‘ .




supernode of Hn is connected by external edges to n other supernodes
{b € v|address (b) =EXT(w,i) for i=0,1,...,n-1}.

For any m let {O,l}<m> be the set of binary strings of length not more
than m-1. We define a subdivision of the node set V that indexes the subsets

<n+1>
by binary strings from {0,1} " 1> For each w€{0,1}" 1let

<n>
viwl = {bEVladdress(b) =w and stage(b) =0}. For each w€ {0,1} n let
Viwl ={b€V|w is a prefix of address(b) and |w|=stage(b)}. Thus VIA] is
the set of nodes of stage zero where A is the empty string. Let root v[w] of

n-|w]

Viw] be the node with address wO and stage |w|. Note that for

Iw! €n-1, viw) has a departing forward internal edge entering w[w0] and a

departing forward external edge entering viwl].




+
3. Packet Routing on the CCCn

This section briefly describes the probabilistic packet routing algorithm
of Valiant and Brebner ([15] as applied to thue ccc; by Upfal [13]}.

We require that each node a€V contain for each <zparting edge e a queue
Qe for the packets that are to be transmitted across edge e. Each node also
contains its address and stage posted as local variables.

ILet X be the set of cN packets to be routed, where each packet x€X
is initially at a given node Ixév and we wish x to be routed to given
destination node Dxe\h The algorithm has two phases:

A. (Random Routing) Route x from Ix to a node RXE\I with random

address.
B. (Fixed Destination Routing) Route x from Rx to Dy.
The random routing of = in Phascce A iz zcocompliched by repeating for n

stages the transmission of x across a randomly chosen departing forward edge
(i.e., transmit x across the forward internal edge or forward external edge
with equal probability). Phase B repeats for n stages the following: if x
is currently at node a#Dx with j=stage(a)+1 and address(a)l[j] =
address(Dx)[j], then x 1is transmitted across the forward internal edge
departing v and otherwise x is transmitted across the forward external edge
departing v. This takes the packets to nodes with the correct addresses.
Finally, the packets are pipelined to the nodes with correct stage by traversing
internal edges.

We have not yet specified the maragement of the gueues of packets at each
nsde. Suppose the priority of packet x€X is assigned to be the number of
stages of phases A and B so far accomplished, and we allow packet x to be
transmitted from each node a€V only after all packets of lower priority have

been transmitted from a. Let TA' TB be the total execution times of phases A




B N e

and B respectively. The techniques of Aleliunas [1] and Upfal [13] show the

following:

Theorem D. For same c21 for all sufficiently large «

_a -
Prob(TA >can) <N , and Prob(TB > can) <N Q.

We note that since the first phase sends packets to random addresses the

probability that, at its completion, there are more than c,on packets at any

one node, or c.,an packets at any address, can be similarly bounded by N_a

2

(for suitable constants c1 and cz).




4. Some Combinatorial Identities

We shall use the following inequalities. Let exp denote exponentiation of

Buler's constant e.
Fact 4.1. For all x (l+x-l)x<e. For all sufficiently large x>0 (1+x-1)x >e(l-1/(2x)).

Let B(m,N,p) be the probability that in N independent Bernoulli trials

with probability p of success there are at least m successes.

Fact 4.2. (Chernoff [4])

m N-m
B(m,N,p) < (EP.) (N;Np_)

m N-m
. 2
£ exp(-m-Np) if m>Npe® .

Fact 4.3. ([2)) If m=Np(l1+B) where O0S<B<€1 then
2
B(nm,N,p) € exp(-B“Np/2) .

Fact 4.4. (Hoeffding [7]) 1If we have N independent Poisson trials with
respective probabilities Pyre-- Py where Zpi=Np and if m2Z2Np+1 is an

integer then the probability of at least m successes is at most B(m,N,p).

Fact 4.5. (I[5]}, p. 18) 1If n=o(N2/3) then

n
N N 2
(n) = (1+o0(l1)) vy exp (-n"/2N) .

Fact 4.6. Suppose x<a, X<A are all functions of n such that Xx=o0(a)

and x=o(A2/3). Let x=aP+G, X=AP %G where P=(X+x)/(A+a), G=o(aP)

and G=o(AP). Then
a A a+A < - 2
(x) (X)/(x+x) < (1+0(1))exp(-G°/aAP) .

Proof. Applying Fact 4.5 gives

P IR e T PP M, Bt T e b e




X
(A) = (1+o0(1)) :—- exp(-x2/2A)

and

X+x
Ata (A+a) o2 2
(X+x) £ (1+0(1)) W exp(-{X" + 2xX + x") /2A)

Using Xx=o0(A) and applying Stirling's formula to X!, (X+x)! and x! gives

a) (2 ffara) o (2" (B)" (xex)* (1+0(1))
x/ \X x+X b X A+a )
Substituting x=aP+G and X=AP-G (or x=aP-G and X=AP+G) and

using Fact 4.1 gives the claimed bound. o

We shall denote by w{l) any function that tends to infiuity as n-wo,
We shall assume that ratios take integral values whenever this is convenient

and otherwise insubstantial.

rd
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5. Splitter Directed Routing

Iet X be a set of cN keys that are totally ordered by the relation <.
We assume that each key x€X is initially located at a random node in V)
chosen independently of any other key in X - {x}. Suppose that we are given a
. . L , ;
set of splitters LCX of size lZ[ =2"-1. We index each splitter ¢[w] €L
. s , . <>
by a distinct binary string w€ {0,1} of length less than £. Let <e

<>
denote the ordering defined as follows: For all w,u,v€{0,1} L

<>

wlu<*w<*wlv. We require that for all w_,w, € {0,1} Olw ) <olw,] iff

172

w1<° Wy We assume that a copy of each splitter o(w] is already available
in each node of V[w].

Let X[A]l =X where A is the empty string. 1Initially we assume that the
keys of X[A] are located at V[A], that is the nodes of V having stage zero.
The splitter directed routing is executed in £ temporally overlapping stages
i=0,1,...,8-1. For each w€ {0,1}i the set of keys X[w] are all eventually
routed through V[w]. The splitter O[w] partitions X[w]) -0[w] into disjoint

subsets

X fw0)

{x€xIw)|x<o[w]}

and

X[wl] = {x€EXx[w}|o[w] <x}

which are subsequently routed through Vv[w0] and V[wl] respectively.
Suppose that a key x€ X[w] is located at a node a€V[w] with address
ww' and stage i. Let B be the first bit of the address suffix w'. Then
}; is transmitted from node a across the departing forward internal edge if
B % (0lw) <x), and x is transmitted across the departing forward external
edge otherwise. Thus if x<0[w] then x is transmitted to a node with
address prefix w0, and if O[w) <x then x is transmitted to a node with

prefix wl.




N — ' a
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Note that at any one time distinct keys may be at distinct stages. When
all the keys have completed stage £-1 the keys X-I are partitioned into 22
disjoint sw.sets of the form X([w] where w€{0,1}£, and the keys X{[w] are
then located within V([w]. The following follows directly from the assumption

that O[w1]<0[w2] if wl<'w2:

[
lemma 5.1. For any Wy w2€{0,1} if wy <ty then X, <x, for all

x1€x[wl] and X, € X[wzl.

Also, since each packet is assumed initially to be at a random node and
since the above described splitter directed routing (SDR) procedure does not

modify the last n-% bits in the address of a packet, we can deduce that:

Lemma 5.2. For each w€{0,1}2’ and each x€X[w)] SDR takes x to a rcndom

node tn vV{wl chosen independently of any other packet.

The SDR procedure can be viewed as a generalization of Phase B of the

routing procedure described in Section 3. It routes packets from random source
nodes to specified destinations such that the number of packets destined for
each region is about the same. The analysis used in the proof is an extension
of the techniques introduced by Aleliunas [1] and Upfal [13] for establishing

good bounds for such constant degree graphs as the CCC and d-way shuffle.

Theorem B. Suppose we have a network cecr with a set X of cn2" packets
and a set I of 22'-1 splitters where n222n/2 such that for
all we {o,1}* | x{w] <2en27 %, Suppose that all the remaining
packets are at independently chosen random nodes of VIAl. If T
i8 the total time for execution of SDR then for some cye k>0,
for all sufficiently large o and all c21

n-% 20n

Prob(T > c can) <2 " 4 exp(-k.2""%) -2 .

2




|
|
‘

Proof. First we observe that since the packets are randomly distributed

initially, the probability that some a€V[A) initially contains more than

melatlln e 552, This follows immediately

c{a+l)n Xkeys is less than 2
from Fact 4.2.

Let B=0a+1. To each packet we assign a random integer from the set
1,...,Bn as its priority. Each packet has probability (Bn)-l independently
of being assigned any particular such number. In SDR we will insist that no
key be forwarded from a node before all keys of higher priority that ever visit
it have been forwarded. ([In practice we simply forward the packets currently
at any node in order of their priority. This will be at least as fast, clearly,
as the hypothesized algorithm that prophesies about future arrivals.)

For each node a and priority m€{1,...,Bn} 1let task 1= (a,mM
be the job of forwarding all keys of priority 7T that ever visit node a. Let
a delay be any pair of tasks (Tl,'rz) = {{a,m),(b,P)) where either a=b and
p=1+1 or (a,p) is an edge of the network and T =p. The two cases

correspond to the two ways in which the execution of a task T may depend on

2

In the first case T has to wait for packets of

the completion of task T 2

1
lower priority to be processed at its node. In the second case 12 has to

wait for the arrival of a packet from an adjacent node.
let a delay sequence D be a sequence of delays (TgeTy) s

(11112).. o ),('td_l.Td). Note that 4dA<L +Bn since in each delay in

Ta-27Ta-1

any such sequence either the stage of the node increases by one or the priority
increases by one. Since there are just two possible forward edges of trans-

mission and just one way of increasing the priority, the total number of delay

: : + . .
sequences starting at any one node is at most 32' Bn. Hence their total number

is at most 2n.3£+8n<25n+20.n.




Let T(D) be the number of time units (i.e., packet transmissions)
involved in D (i.e., in To,Tl,...,Td). It remains to prove that for some

¢ for all D and all sufficiently large ¢ and a,

4

-3can~-6n

Prob(T(D) > c,can) <2 .

4

for then the probability that the worst sequence suffers that much delay is
at most

-3can-6n —Qan-
2 . 22an+5n < p~on-n

This is proved under the assumption that there are at most cl(a+l)n packets
initially at any node. Since, as has been observed, this event is equally
unlikely the result follows.

To establish the time bound on T(D) consider any particular D and let
Tj = (a,7) where stage(a) =i be a task in D. Let Pj be the set ot keys
that have nonzero probability of being routed through Tj (i.e., if their
priority and initial position are suitably chosen) but would then depart from
D at Tj. Departure from D occurs either because (Tj.Tj+l)= ((a,m),(a,m+1))

(since the priority of a packet cannot change) or because (Tj'rj+1) =
((a,7),(b,m+1)) but (a,b) is not the edge along which the packet leaves node a.
Note that in the latter case the i-th bit of the destination address of packets
that depart from D at Tj is different from those that depart at later
points. It is easily deduced that once the priorities are fixed, the sets
Pl,Pz,...gy...Pd are pairwise disjoint.

Now Pj is just the union of X[w]l for varicus er(O.l}Q such that w and a
agree in the first i bits. By the assumption about the size of X[w] it
follows that |Pj| <2en2™1,

Let Rj be the set of keys that have nonzerc probability of beinag routed

through T once the priorities have been decided. Since the priorities are

b)




determined by Bernoulli trials with probability (Bn)-l, Fact 4.2 can be used to

give the following bound

Prob(lel > 4cn2™t (Bn)_l) (exp(-k-Zn-z)
for an appropriate constant k >0. The second term in the theorem follows from
multiplying the above bound by the number of choices of D and j.
Finally, let l(j be the actual set of keys that do depart from D at

Tj because both the priority and the initial positions were appropriately
chosen. For each such packet the initial position must agree with a in the
last n-i bits. Hence Kj is determined by Rj Bernoulli trials each with

- i-n . n-i -1 .
probability 2 of success. Hence assuming |le<.4cn2 (Bn) for each 3j
we have Bernoulli trials with expectation €4c¢/B. To upper bound
d
> Ik,|

3~1
we appeal to Hoeffding's Theorem (Fact 4.4). We have at most cn2” trials with
mean at most (4c/B) (1+Bn) <Scn if B>4. Using Fact 4.2 it follows that
~-c_,cn

Prob(XlKjl > cyoan) <2 3 (1)

if ca> s5e2.

Finally, we have to consider the case of packets being involved in more
than one task of D. This can be done by considering any fixed assignment of
keys to departure points in D and considering the probabilities of repeated
earlier involvement in D. If a key was involved in D at 'rj then the probability
of a previous involvement at Tj—l

involvements. Hence if a key was involved in D at Tj then the probability of t

is at most one half independent of subsequent

pPrevious involvements (i.e., with Tj-l""'rj-t) is at most 2‘t. It follows that

Prob(T(D) 2K +s and zlxj|=x)<2's.prob():|xj|>x) . (2)




-15~

From (1) and (2) it follows that if c3a>5e2

1-c3can
Prob (T (D) >2c3can) <:2
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6. Deterministic Sorting and Ranking

We use as subroutines some known deterministic algorithms. A crucial
g step in splitter finding is sorting a sparse subset of elements. For this

we can use the algorithm of Nassimi and Sahni [8].

l-e

Theorem NS. For any €>0 N keys can be sorted on a cee, when N=n2"

in time O(n).

Step C of the overall algorithm determines the rank of every element given
that it is "almost" sorted. Suppose that for some v we have that all ele-
ments are in nodes at stage i and for all w, <*w,, [w1| =|w,| =i the
keys in V[wll are smaller than the keys in V[wzl. If i =n then we have
a complete sort except that the elements may not be uniformly distributed

among the stage 0 nodes. 1In this situation the rank of each key can be

determined by first sorting the keys at each node locally. The global rank
computation is performed on the binary tree that has these nodes as leaves and
consists of all forward internal edges, and just those forward external edges
along which some address bit changes from O to 1. The number of keys in each
subcube can be determined recursively by sending these sums from the leaves
toward the root and accumulating at each internal tree node. Finally in a
reverse information flow from the root to the leaves, the range of the ranks
in each subcube can be determined, and hence the ranks of the individual keys.
This all takes O(n) parallel transfers of tokens that contain only binary
numbers of O(n) digits.

In Step C of the actual algorithm we start with only a partial sort (i.e.,
for all w, <+*w_,6 with |w1| = |w2| =n-s where s=6 logzn, for all xEV[wll

1 2

and y€Vlw2], x<y). To find ranks in this situation we determine the rank
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range for each x[wll, sort each x[wll, and finally deduce the rank of each
element. The determination of the rank ranges and final rank is as described
in the above paragraph. With overwhelming probability each x[wll will have
at most 2n2s packets. For sorting x[wl] we assign a separate CCC€ to

it where t=s+logn-logs. At least if t divides n, one can find
nzn/(tZZ) disjoint copies of CCC{ in CCC;' The packets are routed to
their appropriate copy of CCC{ (Theorem D) and then sorted there by some o(n)
method such as Batcher's (see Preparata and Vuillemin [9]) which takes

O(log n)2. The above described algorithm for ranking the elements given a

partial sort will be called Algorithm C.
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7. Splitter Finding

We describe a procedure SF that given a CCCR with ¢ packets at each
node finds a subset U of 2n/'n6 packets called "splitters" that divide the
ordered sequence of the cn2" total packets into intexvals that are, with
large probability, all of length smaller than 2cn6+1. The procedure is
recursive, nested recursive calls corresponding to nested subcubes. At the
i-th level of recursion the splitters found divide the ordered sequence into
2n(1—1/21) roughly equal intervals. The subcubes at the i-th level are CCC;
where r=n/2i' [i=0,...,1c9 n-109(281logn)]. At the i-th level a fraction of
about Z—i of the packets are considered "active". The choice of splitters
at lower levels is restricted to these active elements. In this way the
average density of active packets in each CCC? is kept a constant ¢ inde-
pendent of the cube size. This is necessary for the recursive procedure to
succeed. Any integer greater than or equal to six suffices as a value of 6.

The set U of all splitters found in a run of SF[A] will be used in
Step B of the overall sorting procedure.

The procedure SF applied to the subcube with root (w,n-m), where

|w|==n-m, is as follows. When the procedure is called initially with w=2A

all the packets are considered active.

Procedure SF({w)

(1) Let Y[w]) be the active packets in V[w]. For each x€Y|[w)
route x to a raﬁdom node in V[w].
- (2) For each wl, |w1|==m/2i-2109 n, choose at random an active element

from V[wwll. Sort this set S* of nzzm/2

m/2

chosen elements using Theorem NS.

/n2

Route the j-th largest to address w+ j2 . Let S the newly created

/2

set of splitters be the packets at addresses ﬁ-+j2m for j ==].,...,Zm/z--l.




*
If the splitter is found at address wWy and w1=w21w3 where w3€0 then

the splitter is denoted by o[ww2] and routed deterministically to every node
in V[wwz].

(3) For each x€Y[w] -S decide according to a Bernoulli trial with
probability one half whether it is to remain active. Let the active subset
of Y[wl be Zjw].

(4) Apply SDR with the new%y found splitters to Z[wl.

(5) For each w' with Iw' I =m/2 let Y[ww']l be the subset of 2 [w]
routed to subcube V[ww'] by (4). For each such w' call in parallel
SF(ww') for Y([ww'] as active elements, unless m=28logn.

We have seen that SDR for CCCr takes time O(r) with overwhelming
probability. Theorem A will establish that if SF is run, with the recursive
calls of SF being allowed to be asynchronous, then the overall algorithm runs
in time O(n) with large probability. The main fact which has to be established
(Theorem 7.2) is that with overwhelming probability, at every call of SDR the
hypotheses of Theorem B are satisfied. We leave it to the reader to verify that
all the other operations performed in a call of SF(w) with |w| =n-m can be
achieved deterministically, by pipelining if necessary, in time O(m).

First we need a technical lemma:

2 2m/2

Lemma 7.1. Given an ordered set T suppcse that a set S* of n elements

are then chosen from T at random and s* is then sorted. Let Sc<S* be the

subset of elemente having positions n2,2n2,.. . (zm/z-l)n2 in the ordered set.

Suppose  to....ito 18 the longest ordered subsequence of T such that

to,tf+1€s but tl,...,thS. Then

-1/3 m/2) _ (L)

(1) Prob(f> (1+n y{Tl/2

-w(1) H

=173 ) =N .

(ii) Prob(f < (l-n m/2

Y{T|/2
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Suppose that a subset YST-S 1is cnosen rj rerformirg independent Bermoulli
trials with probability 1/2. Let Yoreor Ypa te the lengest crdered sub-

sequerce of YUS such that €s bur Yyoeee oYy €s. Then

Yo'Yh+l

(iii) Prob(h> (1+2n”Y3) |y|12.2™/?) = y @)
(iv) Prob(h< (1-2n %) |y12.2™%) = x|
These claims assiwre that n42m/2=o(]'rl) and n22m/2=o(|T|2/3) .

Proof. All choices of S* are equally likely. To prove (i) and (ii) consider
-1/3

any sequence t:o,. I with f=(1*n ) ]T]/Zm/z. Then the probability that

n22111/2

f+1

of the members of S* exactly n2 lie in the above range and the

rest outside is

( |7)-£ ) (f)/( || )
\ 11221“/2—(12: \112 )z “22m/2 )

/
\

Applying Fact 4.6 with A= ITI, a=f, x=n22m/2-n2, x=n2 gives G= >/3 and

an upper bound of

exp(-n4/3/2)
provided n42m/2=o(|'1‘|) and n22m/2=o(|'1‘|2/3). This establishes (i) and (ii)
since there are at most 2" choices of to, tf+1 and f respectively.

To show (iii) and (iv) it is sufficient to prove that in a sequence of

-1/3) "I‘I/Zm/2 ordered elements of T the probability that the number of

"3y 11| /2.2"2 s

(Lin
elements chosen to be in Y is outside the range  (1%2n

negligible. In fact Lemma 4.3 upper bounds this probability by

exp(-n 2/::'ITI/(Q.Z’“/Z))

which is bounded above by exp(-n?/3) if 2™2.n%=0o(1). o
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Theorem 7.2. In a run of SF{()) the probability of each of the following
events for each recursive call of SF(w) 1s bounded above by B
provided m2Z 12log n.
(a) Step (ii) fails because V[wwl] has no active packets.
(b) In the call SDR for subcube w with w=n-m, it happens that
lztwl] > 2em2™  or [ztwl] < m2™/2.
(c) In the call SDR for subcube w with w=n-m, it happens that
iV[w] | > 2cn2™.
Since in a run of SFIA] there are at most 3N suci events altogether tne
probarility that any suck event egver occurs inm a run is tnerefore also Ecumded

by N-w(l)

Proof. The proof proceeds by induction on the depth of recursion. We assume

that the Theorem holds down to the current level of recursion and argue that

. . . -W
the probability of "going wrong" at the current call is less than N (1).

(a) Since the active elements Y[w] have been sent to random nodes in

VIw] the probability that they cll miss V[wwll is

cm2™/2

m/ 2n2)) .

(1-1/1(2
By Fact 4.1 this is bounded above by

exp (-cm2™2/ (2n2) )= 1)

if m=212log n.
{b) We assume inductively that in the call of SDR at the i-th level of

recursion the set T o felements in the corresponding subcube had size in the

range (l-i-n-]'/:!‘)lanrn (where m=n/21). Applying Lemma 7.1 (ii) gives that,

at the next level of recursion, the probability of a subcube naving more than

1/3) 2-m/2 -w(1) .

(1+n" times as many packets is bounded above by N




(c) We assume inductively that in the call of SDR at the i-th level of

recursion the set of active elements denoted again by T in the subcube

-1/3

corresponding to w is at most (1+2n )lanm-l. Then by Lemma 7.1 (iii)

the probability that the number of active elements in a subcube at the (i+l)-st
1/3)2-m/2.2-1

§ level call is at most (l+2n~

t - i+ -{i . \
: (1+2n 1/3)1 1cn2m/2 (1+1) as required. (]

times this quantity, which is

Theorem A. For all c there is'a c. such that for all sufficiently large B

5
tf SF()) <is run on ccck with c packets per node then
Prob(T > c.Bn) < LI

Proof. In a run of SF a critical path is a sequence of nested calls of
SF(A), SF(wl), SF(wlwz),...SF(wlwz...wi),... where [wj[ =n2"7. The deter-
; ministic components of each take time proportional to iwii. When summed for

i=1l,...,1l09 n-1log(l2logn) this gives an upper bound of 0(n) as required.

Hence it remains only to analyze the cumulative probabilistic effects of such

a chain of calls of SDR. Note that these calls are probabilisti.:i'.y inde.sndent.

Theorem B says that for sufficiently large 2 a call of SDR on wl...wj

exceeds runtime ¢ 0.n/21 with probability less than

2
i
27on/2 .
" Hence it exceeds runtime czn/2i+(a-l)czn/21==c2n/21-+ti (say) with
probability less than
-t./c
2 i 2 .

Hence the probability that such a sequence of nested calls takes time more than

c2n+t is less than




-t./c -t/c
)IRIPEE U EPIED DI
It =t It =
i i
-c,an
< 2 3
for some c, if t=c2(0.-l)n and a22. The result follows. o
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